Search results for "Classical Heisenberg model"
showing 3 items of 3 documents
HIGH-PRECISION MONTE CARLO DETERMINATION OF α/ν IN THE 3D CLASSICAL HEISENBERG MODEL
1994
To study the role of topological defects in the three-dimensional classical Heisenberg model we have simulated this model on simple cubic lattices of size up to 803, using the single-cluster Monte Carlo update. Analysing the specific-heat data of these simulations, we obtain a very accurate estimate for the ratio of the specific-heat exponent with the correlation-length exponent, α/ν, from a usual finite-size scaling analysis at the critical coupling Kc. Moreover, by fitting the energy at Kc, we reduce the error estimates by another factor of two, and get a value of α/ν, which is comparable in accuracy to best field theoretic estimates.
The classical two-dimensional Heisenberg model revisited: An $SU(2)$-symmetric tensor network study
2021
The classical Heisenberg model in two spatial dimensions constitutes one of the most paradigmatic spin models, taking an important role in statistical and condensed matter physics to understand magnetism. Still, despite its paradigmatic character and the widely accepted ban of a (continuous) spontaneous symmetry breaking, controversies remain whether the model exhibits a phase transition at finite temperature. Importantly, the model can be interpreted as a lattice discretization of the $O(3)$ non-linear sigma model in $1+1$ dimensions, one of the simplest quantum field theories encompassing crucial features of celebrated higher-dimensional ones (like quantum chromodynamics in $3+1$ dimensio…
Thermodynamic properties of a classical d-dimensional spin-S Heisenberg ferromagnet with long-range interactions via the spectral density method
2003
The thermodynamic properties of a classical d-dimensional spin-S Heisenberg ferromagnet, with long-range interactions decaying as $r^{-p}$ and in the presence of an external magnetic field, is investigated by means of the spectral density method in the framework of classical statistical mechanics. We find that long-range order exists at finite temperature for $dd$ with $d>2$, consistently with known theorems. Besides, the related critical temperature is determined and a study of the critical properties is performed.